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Entropy production along a single stochastic trajectory of a biomolecule is discussed
for two different sources of non-equilibrium. For a molecule manipulated mechanically
by an AFM or an optical tweezer, entropy production (or annihilation) occurs in the
molecular conformation proper or in the surrounding medium. Within a Langevin
dynamics, a unique identification of these two contributions is possible. The total
entropy change obeys an integral fluctuation theorem and a class of further exact
relations, which we prove for arbitrarily coupled slow degrees of freedom including
hydrodynamic interactions. These theoretical results can therefore also be applied to
driven colloidal systems. For transitions between different internal conformations of a
biomolecule involving unbalanced chemical reactions, we provide a thermodynamically
consistent formulation and identify again the two sources of entropy production, which
obey similar exact relations. We clarify the particular role degenerate states have in
such a description.
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PACS numbers: 05.40.-a Fluctuation phenomena, random processes, noise, and
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1. INTRODUCTION

Biological systems are generically out of equilibrium. Still, for most pro-
cesses in cell biology taking place on the level of a single (or few) molecules,
the intracellular aqueous solution provides an environment with constant tem-
perature. The genuine source of non-equilibrium are not temperature gradients
but rather mechanical or chemical stimuli provided by external forces or im-
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balanced chemical reactions. Such a characterization motivates the quest for a
thermodynamical understanding of mechanically or chemically driven non-
equilibrium processes taking into account their necessarily stochastic character
on the level of few molecules. (1) Crucial for such a program are consistent formu-
lations of the first and the second law under these conditions.

For mechanically driven processes, the controlled unfolding of proteins, RNA,
and DNA typically described by Langevin equations can serve as a paradigm (for a
review, see Ref. 2). For the overdamped motion of a single colloidal degree of free-
dom, Sekimoto has shown how to relate work, internal energy and exchanged heat
with the terms occurring in the Langevin equation, thus providing a formulation
of the first law on the level of a single trajectory. (3) The extension of this inter-
pretation to a biomolecule with several overdamped spatial degrees of freedom
subject to both a potential of mean force and some additional mechanical force
applied via an AFM or optical tweezers is, in principle, straightforward and will
be given below. As a refinement of the second law, the Jarzynski relation expresses
the free energy difference of an initial (folded) and a final (unfolded) state by an
exponential average of the non-equilibrium work spent in such a transition.(4−7)

This relation has found wide-spread attention both in experimental and theoretical
studies of unzipping and unfolding transitions.(8−13) It has also inspired theoretical
studies on the probability distribution of the work spent in such processes.(14−16)

Even though the Jarzynski relation does not explicitly require a definition of en-
tropy on the level of a single trajectory, one obtains a second-law like inequality
for the average work as a mathematical consequence. The concept of an entropy
of a single trajectory is fruitful since it allows to derive equalities different from
but related to the Jarzynski relation for the total entropy change directly. (17)

For chemically driven processes, an equally comprehensive understand-
ing and formulation is not yet available. Based on classical work on network
thermodynamics,(18−21) ensemble properties like mean heat dissipation or entropy
production rate have been identified and investigated (see Ref. 23–25 and refer-
ences therein) with only a few attempts to provide a thermodynamic interpretation
of the single reaction events. (26,27) Taking the Langevin equation for mechanically
driven processes as a guideline, however, it should be possible to formulate for
single biochemical reaction events a first-law like energy conservation statement.
Likewise, for a proper formulation and refinement of the second law, one should
develop a notion of entropy along such a single stochastic history of reaction
events. Only after averaging one will then recover previous ensemble formu-
lations. The motivation for such a trajectory-based approach also derives from
the exciting experimental possibilities to study conformational changes of single
enzymes using fluorescence spectroscopy as reviewed in Refs. 28, 29. Finally,
molecular motors comprise a class of systems where biochemical reactions lead
to discrete mechanical steps for which such a thermodynamic modeling should
become appropriate as well.(30−37)
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This paper presents a coherent theoretical framework for describing both
mechanically or chemically driven transitions between different configurational
internal states of a biomolecule in a way that is thermodynamically consistent
on the level of a single trajectory. In particular, concerning entropy production,
we exploit the general framework introduced in Ref. 17 for such isothermal non-
equilibrium processes. In Sec. 2, we consider the mechanically driven dynamics of
a biomolecule involving several (slow) degrees of freedom. We provide a first law-
like interpretation of the Langevin equation for its coupled overdamped degrees
of freedom and derive exact relations on entropy production along such a driven
trajectory, thereby extending our previous work both to many degrees of freedom
and to (long-range) hydrodynamic interactions among them. Such interactions will
become particularly relevant for colloidal systems (to which the same formalism
is applicable) if extant studies of their non-equilibrium thermodynamics(38−44)

are pushed beyond the one particle level. In Sec. 3, we first consider transitions
between different internal states of a protein or enzyme caused by biochemical
reactions involving unbalanced chemical species which are the source of non-
equilibrium in this case. We then apply the general notion of entropy production
introduced in Ref. 17 to such transitions and derive exact relations for the total
entropy production. Finally, we discuss the modifications arising from a possible
degeneracy of the states occurring in such a description. In Sec. 4, we discuss a
few perspectives of our approach. The Appendix contains the path-integral based
proof of a general integral fluctuation theorem for (hydro)dynamically coupled
degrees of freedom in a time-dependent potential.

2. MECHANICALLY DRIVEN CASE

We describe the biomolecule by a set x ≡ (x1, . . . , xd ) of internal coordinates,
which should comprise the relevant d slow degrees of freedom. In equilibrium, this
molecule feels a potential (of mean force) V0(x). Optical tweezers or a cantilever
attached via a linker give rise to an additional potential Vex(x, λ). The external
control parameter λ(τ ) describes the time-dependent motion of the tweezer focus
or the base of the cantilever, see Fig. 1. As equation of motion, we choose a
Langevin description

ẋi = −µi j
∂V

∂x j
+ ζi , (1)

where summation over repeated indices is understood throughout the paper. Here
V (x, λ) ≡ V0(x) + Vex(x, λ) is the sum of both potentials. We allow for a non-
diagonal mobility µi j (x) which can include hydrodynamic interactions, e.g.,
through an Oseen tensor. (45) The stochastic increments ζi are modeled as Gaussian
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Fig. 1. (color online) Biomolecule with (slow) degrees of freedom x = (x1, . . . , x5) attached via
polymeric linkers to a substrate (x0, left end) and a bead (x6, right end) controlled externally by
laser tweezers at position λ(τ ). The bare potential V0(x) involves the internal degrees of freedom.
The external potential can be modeled as Vex(x, λ) = V1(x1 − x0) + V1(x6 − x5) + (k/2)[x6 − λ(t)]2,
where V1(y) is the potential for a (semi-flexible) linker with extension y and k is the strength of the
optical trap.

white noise with

〈ζi (τ )ζ j (τ
′)〉 ≡ 2µi j (x)δ(τ − τ ′). (2)

Throughout the article, we measure energies in units of kBT , which is set to 1.
Likewise, we use a dimensionless entropy, i.e., we set the Boltzmann constant kB

to 1 as well. Under equilibrium conditions for constant λ, the type of correla-
tions (2) guarantees that the Boltzmann distribution p(x, λ) ∼ exp[−V (x, λ)] is
stationary. It is an essential assumption for the theory we will be discussing that
these correlations persist despite the fact that for a time-dependent protocol λ(τ )
we are no longer in equilibrium.

The Langevin dynamics can be cast in the form of the first law, i.e., energy
conservation along a stochastic trajectory. (3) Manipulating the system by changing
the external control parameter λ gives rise to an increment in applied work

dw ≡ ∂V

∂λ
dλ. (3)

This work will either change the internal energy

dV = ∂V

∂xi
dxi + ∂V

∂λ
dλ (4)

or is dissipated as heat

dq = dw − dV = −∂V

∂xi
dxi (5)
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into the thermal environment. Since the heat bath has constant temperature, we
can identify this exchanged heat with a change in entropy of the medium as

ṡm(τ ) = dq

dτ
= −∂V

∂xi
ẋi . (6)

This quite natural definition of the entropy change of the medium along each
trajectory raises the question whether there is a corresponding entropy change of
the biomolecule itself.

Following the route outlined in Ref. 17, we now show that such an entropy of
the “system” can consistently be defined along each stochastic trajectory x(τ ) as

s(τ ) ≡ − ln p(x(τ ), τ ), (7)

where p(x, τ ) is the solution of the Fokker-Planck equation for the probability
distribution

∂t p(x, τ ) = −∂i ji (x, τ ) = ∂

∂xi
µi j

[
∂V

∂x j
+ ∂

∂x j

]
p(x, τ ). (8)

Upon averaging with p(x, τ ), this stochastic entropy becomes the non-equilibrium
Gibbs or Shannon entropy

S(τ ) ≡ 〈s(τ )〉 = −
∫

dd x p(x, τ ) ln p(x, τ ). (9)

The advantage of defining such a system entropy is that one can proof quite general
theorems involving the total entropy change

�stot ≡ s(t) − s(0) +
∫ t

0
dτ ṡm(τ ) (10)

along a stochastic trajectory x(τ ) of length t . As shown in the Appendix, this total
entropy change obeys the integral fluctuation theorem

〈exp[−�stot]〉 = 1, (11)

which implies immediately the second law in the form

〈�stot〉 ≥ 0. (12)

The brackets 〈· · ·〉 denote the average over infinitely many realizations of the
process. Similar results have been derived within a Hamiltonian dynamics in Ref.
46. Moreover, for any function of the final coordinates f (xt ) one even has the
relation

〈 f (xt ) exp[−�stot]〉 = 〈 f (xt )〉 . (13)

The relations (11) and (13) are quite universal since they hold for the non-
equilibrium average 〈· · ·〉 with any initial distribution p(x, 0), for any trajectory
length t , and for any driving protocol λ(τ ).
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These relations should be distinguished from both the Jarzynski relation(4,5)

〈exp[−Wd]〉 = 1 (14)

and the relation(7)

〈 f (xt ) exp[−Wd]〉 = 〈 f (xt )〉eq,λ(t) , (15)

where Wd ≡ W − �F = W − [F(λ(t)) − F(λ(0))] is the dissipated work in-
volved in the non-equilibrium transition between the initial equilibrium state at
λ(0) with free energy F(λ(0)) and the final state at λ(t) with free energy F(λ(t)).
In particular, in relation (15) the average on the right hand side corresponds to an
equilibrium average at the final value of the control parameter, whereas in (13)
it is the average involving the actual probability distribution p(x, t). It is crucial
to note that for Eqs. (14) and (15) the initial distribution has to be the thermal
equilibrium distribution for λ(0) whereas in Eqs. (11) and (13) it is arbitrary.

Even though the motivation of this presentation is on biomolecules, it should
be clear that the mechanically driven case discussed here applies exactly to col-
loidal particles coupled through direct or hydrodynamically induced interactions
and driven by time-dependent laser traps. For such systems, these theorems show
that fluctuation theorems (as well as the Jarzynski relation) persist in the presence
of hydrodynamic interactions.

3. CHEMICALLY DRIVEN CASE

3.1. Enzyme or Protein with Internal States

As a model for a biomolecule driven by chemical forces, we consider a
protein with M internal states {1, 2, . . . , M}. Each state n has internal energy
En . Transitions between these states involve some other molecules Aα , where
α = 1, . . . , NA labels the different chemical species. A transition from state n to
state m implies the reaction

∑
α

rnm
α Aα + n

wnm�
wmn

m +
∑

α

snm
α Aα. (16)

Here, rnm
α , snm

α are the numbers of species Aα involved in this transition, see
Fig. 2. We assume that the chemical potentials, i.e., the concentrations cα of these
molecules are controlled or clamped externally by chemiostats. In principle, this
implies that after a reaction event has taken place, the used Aα are “refilled” and
the produced ones are “extracted”. This procedure guarantees that the chemiostats
undergo no entropy change. We assume a dilute solution of Aα molecules. Hence,
mass action law kinetics with respect to the Aα molecules is a good approximation
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Fig. 2. (color online) Protein or enzyme with internal states. A forward transition (left) from n to
m involves the chemical reaction A1 + n → m + A2 + A3 and similarly for the backward reaction
(right). The rates w0

nm and w0
mn are the (not concentration-dependent) bare rates.

and the ratio between forward rate wnm and backward rate wmn is given by

wnm

wmn
= w0

nm

w0
mn

∏
α

(cα)rnm
α −snm

α . (17)

Here, we separate the concentration dependence from some “intrinsic” or bare rates
w0

nm, w0
mn . Their ratio can be determined by considering a hypothetical equilibrium

condition for this reaction. In fact, if the reaction took place in equilibrium with
concentrations ceq

α , we would have the detailed balance relation

w
eq
nm

w
eq
mn

= w0
nm

w0
mn

∏
α

(ceq
α )rnm

α −snm
α = peq

m

peq
n

= exp (−�G) , (18)

where

�G ≡ −[En − Em +
∑

α

(rnm
α − snm

α )µeq
α ] (19)

is the equilibrium free energy difference for this reaction and peq
m,n are the equi-

librium probabilities of states m and n, respectively. The chemical potential for
species α quite generally reads

µα ≡ Eα + ln cα, (20)

which for equilibrium becomes µ
eq
α = Eα + ln ceq

α . The dimensionless number cα

is the concentration in units of ω−1
α , where ωα is a suitable normalization volume

chosen such that Eα is the energy of a single Aα molecule. If the Aα molecules were
an ideal monoatomic gas, we would have ωα = λ3

αe−3/2 where λα is the thermal
de Broglie wavelength and the factor e−3/2 compensates for making the kinetic
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energy Eα = 3/2 explicit. (47) Combining this with Eqs. (18) and (19) shows that
the ratio of the intrinsic rates

w0
nm

w0
mn

= exp[En − Em +
∑

α

(rnm
α − snm

α )Eα] (21)

involves only the energy-terms and is independent of concentrations. Equation
(17) for the ratio under non-equilibrium conditions then becomes

ln
wnm

wmn
= En − Em +

∑
α

(rnm
α − snm

α )µα ≡ −�E + wnm
chem. (22)

The right hand side corresponds to the difference between applied chemical work

wnm
chem =

∑
α

(rnm
α − snm

α )µα (23)

(since every transformed Aα molecule gives rise to a chemical work µα) and the
difference in internal energy �E . For the first law to hold for this transition, we
then have to identify the left hand side of Eq. (22) with the heat delivered to the
medium, i.e. with the change in entropy of the medium

ln
wnm

wmn
= �snm

m . (24)

The present identification of work, internal energy and heat depends cru-
cially on the fact that we control the concentrations cα externally. This means in
particular that the chemical work has to be spent for “refilling” the chemiostats
after each reaction step. A somewhat different identification applies if one con-
siders relaxation (without further external interference) from an initially prepared
non-equilibrium state with cα 	= ceq

α to the corresponding equilibrium state with
ceq
α for τ → ∞. In this case, the system should comprise the enzyme and the Aα

molecules. The change in the internal energy of the system for a single reaction
step then is �Ẽ ≡ Em − En + (snm

α − rnm
α )Eα and since the first law then involves

no external chemical work, Q ≡ −�Ẽ = ln[w0
nm/w0

mn] is dissipated as heat.
Coming back to the situation with externally controlled cα , we now show that

this identification between the ratio of the forward rate and the backward rate with
the heat exchanged in this step and hence the change in entropy of the medium
(arising here from an interpretation of a single reaction step in terms of the first
law) fits into the general scheme of entropy production in stochastic dynamics
introduced in Ref. 17.

3.2. Entropy Production in Stochastic Network Dynamics

We briefly recall the essential relations of Ref. 17 where entropy production
was defined quite generally for a Markovian dynamics on a discrete set of states
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{n}. Let a transition between discrete states n and m occur with a rate wnm(λ),
which depends on an externally controlled time-dependent parameter λ(τ ). The
master equation for the time-dependent probability pn(τ ) then reads

∂τ pn(τ ) =
∑
m 	=n

[wmn(λ)pm(τ ) − wnm(λ)pn(τ )]. (25)

For any fixed λ, there is a steady state ps
n(λ). (19)

A stochastic trajectory n(τ ) starts at n0 and jumps at times τ j from n−
j to n+

j
ending up at nt . As entropy along this trajectory, we have defined

s(τ ) ≡ − ln pn(τ )(τ ), (26)

where pn(τ )(τ ) is the solution pn(τ ) of the master Eq. (25) for a given initial
distribution pn(0) taken along the specific trajectory n(τ ). The rate of entropy flow
into the medium is defined as

ṡm(τ ) ≡
∑

j

δ(τ − τ j ) ln
wn−

j n+
j

wn+
j n−

j

≡
∑

j

δ(τ − τ j )�s
n−

j n+
j

m , (27)

which leads to a change in the medium entropy along a trajectory of length t as

�sm =
∫ t

0
dτ ṡm(τ ). (28)

The total entropy change

�stot ≡ s(t) − s(0) + �sm =
∑

j

ln
pn−

j

pn+
j

+
∑

j

ln
wn−

j n+
j

wn+
j n−

j

(29)

then obeys an integral fluctuation theorem

〈exp[−�stot]〉 = 1, (30)

which implies the second law like statement

〈�stot〉 ≥ 0. (31)

Likewise, one has in complete analogy to the mechanically driven case discussed
above the extension

〈 f (nt ) exp[−�stot]〉 = 〈 f (nt )〉 , (32)

where f (nt ) is any function of the final state.
These results hold for the non-equilibrium average with arbitrary initial state,

arbitrary time-dependent rates wnm(λ) caused, e.g., by time-dependent concentra-
tions cα(λ), and any length t of trajectories.

Even though the entropy definition for the system (26) and the medium
(27) have been given in Ref. 17 purely formally (or at most in analogy with
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the mechanically driven case), this definition of the change in entropy of the
medium (28) corresponds exactly to the one found in (24) for our biomolecular
example derived on the basis of the kinetics together with the first law formulation
along a trajectory. Crucial for this agreement, however, is the persistence of the
relation (21) for the intrinsic rates in a non-equilibrium situation. In fact, this
persistence corresponds to maintaining the correlations (2) in non-equilibrium in
the mechanically driven case.

3.3. Several Molecules or Equivalent Internal States:

Role of “Degeneracy”

The definitions (26) and (27) for system entropy and entropy change of the
medium are correct and consistent with the simple assumptions for the kinetics if
n and m label single states. An important modification arises if several states are
lumped into one label n.

As an example, consider the case of N identical but spatially separable and
hence in principle distinguishable molecules of the type discussed above each
involved in reactions (16). If we can resolve only the numbers n = (n1, . . . , nM )
of molecules which are in a particular state but cannot distinguish which of the
nn equivalent molecules undergoes the transition from n to m, the state space can
now be labeled by n with the constraint

∑M
i=1 ni = N . Likewise, we could assume

we have N equivalent reaction sites lined up consecutively along a multi-domain
protein where each site could be in any of the M states, see Fig. 3.

We now denote the rate for a transition from n to n′ with

n′
i = ni − δin + δim (33)

by Wnm(n) and the corresponding backward rate as Wmn(n′). Mass action law
kinetics implies

Wnm(n)

Wmn(n′)
= wnmnn

wmn(nm + 1)
(34)

Fig. 3. (color online) Sketch of a multi-domain protein with N equivalent consecutive “reaction sites”,
each involving M (here 3) internal states. The number of sites which are in the internal state m is nm

(here 3).
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since the forward rate is enhanced by the factor nn which counts the number of
molecules in the state n. Likewise, for the corresponding backward transition, any
of the (then) nm + 1 molecules in state m can jump. If one forward reaction takes
place, the entropy change of the medium �snn′

m is still given by

�snn′
m = En − Em + (rnm

α − snm
α )µα = ln

wnm

wmn
, (35)

since the first law for a single reaction event remains the same as above. On the
other hand, by naive application of the general expression (24) as

�snn′
m = ln

Wnm(n)

Wmn(n′)
= �snm

m + ln
nn

nm + 1
(36)

one would obtain an additional term ln[nn/(nm + 1)].
The solution of this apparent inconsistency requires an analysis of the entropy

definition (26) in the case of degeneracy. In our example, the state n carries a
degeneracy

gn = N !∏
i ni !

. (37)

We now define the stochastic entropy of the state n not by (26) but rather by

s(τ ) ≡ − ln pn(τ )(τ ) + s0
n(τ ) (38)

with the “intrinsic” entropy

s0
n ≡ ln gn (39)

determined by the degeneracy. For a single transition n to n′ at time τ , the system
entropy then changes according to

�snn′ = ln
pn(τ )

pn′(τ )
+ ln

gn′

gn
= ln

pn(τ )

pn′(τ )
+ ln

nn

nm + 1
. (40)

If we use this modified definition of system entropy change (40) and the thermo-
dynamically correct change in medium entropy (35), the total entropy production
in a single step

�snn′
tot = �snn′ + �snn′

m = ln
pn(τ )

pn′(τ )
+ ln

Wnm(n)

Wmn(n′)
(41)

has the form of the right hand side of Eq. (29). Hence, the fluctuation theorems (30)
and (32) even hold in the case of a degenerate state space.

Generalizing and summarizing this procedure, we modify the expression
developed in Ref. 17 for the change of the medium entropy as

ṡm(τ ) ≡
∑

j

δ(τ − τ j )

[
ln

wn−
j n+

j

wn+
j n−

j

− (s0
n j

+ − s0
n j

−)

]
, (42)
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where the additional term in round brackets compensates for each jump the change
in the degeneracy factor. In the example discussed above, we now get for the
contribution of this transition to the change in medium entropy

�snn′
m ≡ ln

Wnm(n)

Wmn(n′)
− ln

gn

gn′
= ln

wnm

wmn
, (43)

which is indeed the thermodynamically correct expression. Hence, the modified
definitions (38) and (42) for system and medium entropy change in the presence
of degeneracy are not only consistent with a first law-like energy conservation but
also obey the fluctuation theorems. While we have identified the intrinsic entropy
with the degeneracy, it is tempting to speculate that even for other sources of
intrinsic entropy the definitions (38) and (42) remain meaningful.

3.4. Detailed Fluctuation Theorem in the Steady State

The reaction network discussed above allows also for a genuine non-
equilibrium steady state. Necessary for such a state are at least three internal
states in order to have at least one cycle in the network, i.e. two essentially dif-
ferent reaction paths leading to the same final state. A non-equilibrium steady
state can be obtained if it is possible to adjust the concentrations {cα} such that
a net flux in the species Aα occurs. Hence, the stationary state violates the de-
tailed balance condition ps

nwnm = ps
mwmn . For such non-equilibrium steady states

a detailed fluctuation theorem

p(−�stot) = exp[−�stot]p(�stot) (44)

holds with the present entropy definition for any length of the trajectory (17) thus
extending previous results valid in the long-time limit.(48−52)

4. SUMMARIZING PERSPECTIVES

The thermodynamically consistent description of non-equilibrium processes
of small systems developed in this paper paradigmatically relies on two central con-
cepts. First, we need a first-law like energy balance along the stochastic trajectory.
While its form is pretty obvious in the mechanical case, it is less straightforward
in the chemical case where it involves identifying the dissipated heat as the ra-
tio of the forward and backward rate (up to a possible degeneracy correction).
Second, the non-equilibrium dynamics has to be formulated in such a way that
if it is restricted to the equilibrium concentrations it obeys detailed balance with
the appropriate equilibrium distribution. This condition does not determine the
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non-equilibrium dynamics uniquely. Still, the present choice for the rates both in
the mechanical and in the chemical case seems to be the “minimal” extension
of the equilibrium rates. In fact, one could call such a dynamics an isothermal
non-equilibrium dynamics since the notion of temperature of the surrounding heat
bath still makes sense and serves to relate exchanged heat (occurring in the first
law) with an entropy change of the medium (entering the second law). For this
type of dynamics, entropy along a stochastic trajectory can consistently be defined
such that (i) it reduces upon averaging to the usual non-equilibrium ensemble
formulation; and (ii) together with the identification of the entropy change of the
medium the total entropy change obeys exact relations from which a second law
for the average follows trivially.

Combining the chemically driven with the mechanically driven case dis-
cussed here separately is straightforward. Along this line, one could then apply
our concepts to models previously introduced to describe such coupled systems
like in Refs. 53, 54 or the motor models mentioned in the introduction. Likewise,
the chemically driven case discussed here for one (or several identical) reaction
sites can be extended to a consistent stochastic thermodynamics of any small-scale
biochemical reaction network as will be discussed elsewhere. (55)

The theoretical framework developed in this paper is quite general. Leaving
the appeal of exact relations aside, its significance for any specific system will
depend on working out the particular details. Of special interest seem to be the
distribution for the entropy changes of system, medium and their sum. Presumably
only little can be said for these distribution in general since even for simple
driven non-biological two-level systems these distributions can exhibit a quite rich
structure. (56) For a simple three-state model of the rotary motor in the steady state,
the exact distribution of the entropy change is available through mapping to an
asymmetric random walk. (27) Numerical analysis of more sophisticated models
should finally provide us with a better understanding of how entropy changes on
the stochastic level look like beyond the exact constraints developed in this paper.
Finally, it will be exciting to see when and how these elements of a non-equilibrium
thermodynamics will be integrated to a consistent and comprehensive theory of
the physics of the cell.

APPENDIX: PROOF OF INTEGRAL FLUCTUATION THEOREMS

In this appendix we show how to extend proofs(7,17,52) of integral fluctuation
relations based on time-reversal to many degrees of freedom involving hydrody-
namic interactions. The integral fluctuation theorem for the total entropy produc-
tion (11), the Jarzynski relation, and the more general relation (13) then all derive
from one master formula, which has been given before for the one-dimensional
case in Ref. 17.
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Since the thermal noise ζi (τ ) in Eq. (1) is modeled as Gaussian noise, the
probability for a noise trajectory is P[ζ (τ )] = N exp{−A[ζ (τ )]} with “action”

A[ζ (τ )] ≡ 1

2

∫ t

0
dτ

∫ t

0
dτ ′ ζi (τ )K −1

i j (τ − τ ′)ζ j (τ
′), (A.1)

correlation matrix Ki j (τ − τ ′) ≡ 〈
ζi (τ )ζ j (τ ′)

〉
, and normalization N . We make the

transition from the noise history ζ (τ ) to the trajectory x(τ ) given the initial state
x0 by inserting the Langevin equation (1)

ẋi = −µi j (x)
∂V

∂x j
(x, λ(τ )) + ζi ≡ vi (x, τ ) + ζi (A.2)

along with the noise correlation (2) into Eq. (A.1), leading to

A[ζ (τ )] = 1

4

∫ t

0
dτ [ẋi (τ ) − vi (x(τ ), τ )] µ−1

i j

[
ẋ j (τ ) − v j (x(τ ), τ )

]
. (A.3)

The change of variables from ζ (τ ) to x(τ ) also leads to a Jacobian J [x(τ )]
in the trajectory weight. The Langevin equation discretized into N steps takes the
form

xα
i − xα−1

i

ε
= 1

2

[
vα

i (xα) + vα−1
i (xα−1)

] + ζ α
i , (A.4)

where the upper Greek indices represent discrete time and ε is a small time step.
This discretization corresponds to Stratonovich’s scheme. The Jacobian matrix
resulting from the change of variables is

Jαβ

i j ≡ ∂ζ α
i

∂xβ

j

, (A.5)

from which we calculate the Jacobian as

J [x(τ )] ≡ lim
ε→0

det Jαβ

i j . (A.6)

In order to see the structure of the Jacobian matrix, we define for a given time
index α

±Mα
i j ≡ ±δi j − ε

2

∂vα
i

∂x j
(xα) ≈ ±

[
exp

{
∓ε

2

∂vα
k

∂xl
(xα)

}]
i j

. (A.7)

The Jacobian matrix can then be written as matrix of matrices

J = 1

ε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+M1 0 0 0
−M1 +M2 0 0

0 −M2 +M3 0
0 0 −M3 +M4

. . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
N×N

, (A.8)
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from which the determinant immediately follows as

J [x(τ )] = lim
ε→0

ε−Nd
N∏

α=1

det Mα. (A.9)

Using the identity det exp = exp tr and after taking the limit ε → 0, N → ∞ with
Nε = t we finally arrive at

J [x(τ )] = exp

⎛
⎝−1

2

∫ t

0
dτ

∑
i j

∂vi

∂x j
(x(τ ), τ )

⎞
⎠ . (A.10)

The action (A.3) along a stochastic trajectory can be split into two contribu-
tions

As[x(τ )|x0] = 1

4

∫ t

0
dτ

{
ẋiµ

−1
i j ẋ j + ∂V

∂xi
µi j

∂V

∂x j

}
, (A.11)

Aa[x(τ )|x0] = 1

2

∫ t

0
dτ

∂V

∂xi
ẋi = −�sm

2
, (A.12)

A = As + Aa, where for the last equality we have used Eq. (6). Under time reversal,
i.e., under the transformation

τ 
→ t − τ ≡ τ̃ : λ(τ ) 
→ λ̃(τ̃ ), xi (τ ) 
→ x̃i (τ̃ ), ẋi (τ ) 
→ − ˙̃xi (τ̃ ) (A.13)

the symmetric part of the action stays invariant, Ãs = As, whereas Ãa = −Aa

changes sign. Since the Jacobian J only involves mobility µ and potential energy
V it is invariant under time reversal, J̃ = J . For given initial state x0 and final
state xt = x̃0, the total trajectory weight becomes

P[x(τ )|x0] = N J [x(τ )|x0] exp {−As[x(τ )|x0] − Aa[x(τ )|x0]} ,

(A.14)

P̃[x̃(τ̃ )|x̃0] = N J [x(τ )|x0] exp {−As[x(τ )|x0] + Aa[x(τ )|x0]} .

(A.15)

In order to prove a general version of the integral fluctuation theorem we
combine the physical picture of time reversal with a generalization of the actual
final distribution p(xt ) to an arbitrary normalized initial distribution p1(x̃0) for
time-reversed paths. Normalization then implies

1 =
∑
x̃(τ )

P̃[x̃(τ̃ )|x̃0]p1(x̃0), (A.16)
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where the summation runs over all trajectories. Inserting the actual initial distri-
bution p0(x0) we have the master formula

1 =
∑
x(τ )

P̃[x̃(τ̃ )|x̃0]p1(x̃0)

P[x(τ )|x0]p0(x0)
P[x(τ )|x0]p0(x0) =

〈
P̃[x̃(τ̃ )|x̃0]p1(x̃0)

P[x(τ )|x0]p0(x0)

〉
≡ 〈exp[−R]〉

(A.17)
with

R = ln
P[x(τ )|x0]p0(x0)

P̃[x̃(τ̃ )|x̃0]p1(x̃0)
= − ln

p1

p0
+ �sm. (A.18)

Replacement of
∑

x̃ by
∑

x is admissible since it does not matter how we denote
the summation variable when we sum over all trajectories.

For the proof of Eq. (11), we choose with p1(x) = p(x, t) the actual proba-
bility distribution at the end of the trajectory. With p0(x) the distribution of the
initial state, the ratio

R = �s + �sm = �stot (A.19)

becomes the total change of entropy. If we choose the normalized function

p1(x) = f (x)p(x, t)

〈 f (x)〉 (A.20)

with an arbitrary function f (x), where the average in the denominator implies the
distribution p(x, t), the ratio becomes

R = �stot − ln
f (x)

〈 f (x)〉 , (A.21)

leading to Eq. (13). Finally, if one chooses p1(x) = peq(x, λ(t)), one obtains the
Jarzynski relation (14) and analogously the general relation (15).
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3. K. Sekimoto, Prog. Theor. Phys. Supp. 130: 17 (1998).
4. C. Jarzynski, Phys. Rev. Lett. 78:2690 (1997).
5. C. Jarzynski, Phys. Rev. E 56: 5018 (1997).
6. G. E. Crooks, Phys. Rev. E 60: 2721 (1999).
7. G. E. Crooks, Phys. Rev. E 61: 2361 (2000).
8. G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U.S.A. 98:3658 (2001).
9. J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco Jr. and C. Bustamante, Science 296:1832 (2002).

10. O. Braun, A. Hanke and U. Seifert, Phys. Rev. Lett. 93: 158105 (2004).
11. S. Park and K. Schulten, J. Chem. Phys. 120:5946 (2004).
12. D. Collin, F. Ritort, C. Jarzynski, S. Smith, I. Tinoco and C. Bustamante, Nature 437:231 (2005).
13. T. Speck and U. Seifert, Eur. Phys. J. B 43:543 (2005).



Entropy Production for Mechanically or Chemically Driven Biomolecules 93

14. T. Speck and U. Seifert, Phys. Rev. E 70:066112 (2004).
15. A. Imparato and L.Peliti, Europhys. Lett. 69:643 (2005).
16. A. Imparato and L. Peliti, Europhys. Lett. 70:740 (2005).
17. U. Seifert, Phys. Rev. Lett. 95:040602 (2005).
18. G. Oster, A. Perelson and A. Katchalsky, Nature 234: 393 (1971).
19. J. Schnakenberg, Rev. Mod. Phys. 48:571 (1976).
20. T. L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics, 2nd ed. (Dover, 1989).
21. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems:From Dissipative Struc-

tures to Order through Fluctuations (Wiley, 1977).
22. P. Gaspard, J. Chem. Phys. 120:8898 (2004).
23. D. Andrieux and P. Gaspard, J. Chem. Phys. 121:6167 (2004).
24. H.Qian and D. A. Beard, Biophys. Chem. 114:213 (2005).
25. H. Qian, J. Phys.: Condens. Matter 17:S3783 (2005).
26. T. Shibata, cond-mat/0012404 (2000).
27. U. Seifert, Europhys. Lett. 70:36,(2005).
28. P. Schwille, Cell Biochem. Biophys. 34:383 (2001).
29. X. S. Xie, J. Chem. Phys. 117:11024 (2002).
30. H. Qian, Biophys. Chem. 67:263 (1997).
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